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This paper considers inviscid film flows that originate by injection of fluid 
through the bounding surface. I n  the first part of the paper plates of an average 
inclination are considered. Power-law injection rates are studied in some detail. 
Later it is shown how the analysis has to be modifiedfor almost horizontal plates. 

1. Introduction 
If a liquid is being blown at  a continuous rate through an inclined porous 

surface it will form a film that flows in a downward direction under the action of 
the longitudinal component of the force of gravity. If the rate of mass transfer 
is large and the fluid has a small viscosity, it may be expected that the film will 
be mainly inviscid. Several recent papers have dealt with the problem of intro- 
ducing fluid into an outer stream by means of strong blowing. Acrivos (1962), 
Watson (1966), Cole & Aroesty (1968) and Elliot (1968) concluded that there 
exists an inviscid boundary layer near the surface. At some distance from the 
surface there is a viscous shear layer beyond which the fluid is again flowing 
inviscidly. A sh-gular perturbation technique was employed by the above 
authors to match the viscous and inviscid flows. 

In  the present paper we study strong blowing resulting in a film flow. How- 
ever, we will not be interested in the first place in the influence of viscosity on 
a mainly inviscid flow. The problems solved in this paper concern purely inviscid 
flows only. Despite the inviscid character of the flow we will apply the boundary- 
layer concept to describe the film. This means that the longitudinal component 
of the momentum equation is of primary importance. The component in the 
normal direction only yields a simple relation for the pressure. For plates with 
an average inclination (a! N an) the zeroth perturbation of the pressure may be 
taken equal to zero, which is similar to traditional boundary-layer theory with 
zero longitudinal pressure gradient (Blasius’s flow). Perturbations about this 
zeroth order are proportional to the Froude number, which actually is the ratio 
of the injection velocity and the velocity of free fall based upon the longitudinal 
component of the force of gravity. These Froude number perturbations are 
complicated by the fact that generally the zeroth-order solutions are singular 
a t  the outer edge, i.e. at  the zeroth-order position of the outer edge, The true 
position of the outer edge will be farther away from the surface, since the second 
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momentum equation represents an adverse pressure gradient. Therefore, the 
singularity would be inside the field of interest if one would expand regularly. By 
introducing strained co-ordinates, the singularity may be placed outside the 
flow field. Thus we will use Lighthill’s technique to develop Froude number 
expansions. 

If the plate is almost horizontal the pressure is no longer zero to zeroth order. 
The adverse pressure gradient becomes so important that it can no longer be 
regarded as a small perturbation. This case is considered in detail in the last part 
of the paper. Uniform blowing will receive special attention. If the result is 
expanded for average inclination, complete agreement is found with the per- 
turbation solution of the previous section. 

2. Average inclinations 
Let us consider a semi-infinite flat plate, the leading edge (x = 0, y = 0 )  being 

its highest point. The co-ordinate x measures distance along the plate, y measures 
distance normal to the plate, u and v are the velocity components in the x and y 
directions respectively. Let g denote the component in the x direction of the 
acceleration due to gravity and -gcota that in the y direction. Then, if 9 is 
the pressure and p the density, the governing inviscid equations for an incom- 
pressible fluid are au av 

ax ay 
-+- = 0, 

Boundary conditions are imposed a t  the wall, 

v = vw(x), u = 0 a t  y = 0, (4) 
which denote that the fluid is injected normally at  a certain rate. At  the outer 
edge of the film, y = ye(x), which is defined by @(x, ye) = 0, we have 

F(z, ye) = jY = constant. 

An estimate of the thickness of the film can be obtained by equating the amount 
of fluid that flows downwa.rds through the film at  x per unit of time and the 
amount of fluid that is being blown through the plate between 0 and x during 
the same time. The order of magnitude of the former is ye(x)(gx)+ since the 
inviscid film can fall freely in a downward direction. As the latter amount is of 

which one could consider to be a Froude number. If this is much less than unity, 
the film is thin and thus boundary-layer approximations may be applied to 
(1)-(3). Without going into much detail here, it may suffice to mention, referring 
to the original work of Prandtl, that to first order in the boundary-layer approxi- 
mation, (3) reduces to @lay = 0:  the pressure is approximately constant through 
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the boundary layer. Here this will be valid if cot a is not large. By expanding 
about the zeroth order one may improve the boundary-layer solution. 

In  the present chapter this problem will be considered for power-law injection 
rates, i.e. vw(x )  = Nxk. For these injection distributions the zeroth-order equa- 
tions admit a similarity solution. Since it can be expected that the boundary-layer 
solution becomes more accurate as the relative thickness of the film (5) becomes 
smaller, it is reasonable to introduce this relative thickness as a small perturbation 
parameter. After introducing the stream function $ in the usual way, we perform 
the following transformation: 

Then (2) and (3) are transformed into 

+ +(k + 1) (21~ + 1) d--, + og3). (8) 
arl "7 

Here 5 clearly is a small parameter, while the variable 7 is of order unity in the 
film. The boundary conditions (4) are easily translated into 

aj/@ = 0, f = - l / ( k +  1) at 7 = 0, (9) 

f = 0, p = 0 a t  7 = re([) ,  (10) 

while a t  the outer edge we have 

where re is unknown beforehand and must be determined by the analysis. For 
( = 0, (7) and (8) reduce to  simple equations that can be solved analytically. 
This gives p = 0 and 

From (10) and (11) the first approximation of the outer edge can be obtained as 
follows : 

The solution is particularly simple for k = 0 and k = - 4: 

22-2 
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The first of these represents the important case of uniform blowing. It is seen 
that this solution is vdid downstream since (tends to zero as x tends to infinity. 

In  order to find higher approximations one would expect that a simple regular 
expansion in powers of [ should suffice. However, on doing so one would run 
very soon into severe difficulties, which are caused by the singular behaviour 
of (11) a t  7 = 7;. Indeed, except for the simple cases (13) and (14), the zeroth- 
order solution is singular a t  7 = 76. As the second approximation includes an 
adverse pressure gradient represented by the second momentum equation one 
can expect that the actual outer edge is farther away from the wall than 7 = 7;. 
But for values of 7 larger than 7; the solution of (1 1) is no longer valid. A regular 
expansion thus fails to give the correction a t  the outer edge. Lighthill's technique 
of strained co-ordinates is especially suited to handle problems of this type. The 
basic feature of the method of strained co-ordinates is to introduce the strained 
independent variable 7 which is related to 9 in the following way: 

(15) 9 = r + t g l ( r )  + OlF) .  

Thus the straining is weak in the sense that it disappears when the expansion 
variable 6 vanishes. The function gl(?j) has to be chosen so as to produce the 
desired effect: to dispel the singularity from the flow region. The functions 
f and p are now made dependent upon 7 rather than on 7 and this can be stressed 
by writing these functions with a bar. These are now regularly expanded in the 
following way: 

A% 5) = . f o m  + t.fl(7) + . . . , F ( % O  = 0 + 5F1(7) + . . , (16) 

where fo(v) is exactly the same as (11). This conforms with the vanishing of 
straining as (-+ 0. 

Substituting (16) into (7) and (8) is a lengthy and tedious procedure so the 
algebraical details will not be given here. It results in the following equation for 
fl and pl: 

(k+ l ) ~ o ~ - ( E + ~ ) f ~ f ~ + ( 2 k + ~ ) . f l f l +  (k+&)(7j&--F1) 

- ( E + 1 ) f o f ~ g ; + { ( k + & ) ( f ~ ) 2 - 2 ( k + l ) ~ o f ~ } g ~  = 0, (17) 

p; = - cot a. (18) 

The pressure p1 is easily obtained from (18) by requiring that p1 vanish at  the 
outer edge (only O(5)  are considered). This gives 

in, = (@-?j)cota. (19) 

Equation (17) can now be written in the following way: 

(k + l)fo G" - ( E  + +)fh G' + (2k + +)fl G = ( E  + -i) 7; cot a, (20) 

where G = fl -fhgl. If we observe that G = fh satisfies the homogeneous part 
of (20) it is easy to find a second solution to the homogeneous equation that is 
linearly independent of GI = fh : 
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From the zeroth order of equation (7) with Po = 0 and its solution (11) the 
following identities may be obtained: 

{ - (k + 1)fO}1/@+1) = 1 - 

With (22), (21) can be put into the convenient form (usefA(7;) = 4 2 )  

Since it is also possible to find an analytical solution of the inhomogeneous 
equation, the general solution of (20) can be given as 

f1= G+.fAgsl'= (A+gl ) f~++GIII+( (k+4)7 f~ - (k+  l)f,,b>qEcota, (24) 

where A and B are constants of integration. These constants have to be deter- 
mined by applying the boundary conditions at 7 = 0 (9). The functionsfo,fl, etc., 
however, are dependent on ;i-i rather than on 7. By inverting (15) the value of ?j 
a t  7 = 0 is easily obtained: T(7 = 0 )  = - gl(0) E + higher orders. Upon evaluating 

J;o( - 6 )  + 6.fJ - Sl(0) E )  UP to O ( 0 ,  using (1 1) and (24) we have 

so that B = -7gcota. Applying the second condition af/aq = 0 a t  7 = 0 is 
somewhat more involved. We have to use 

Evaluating the right-hand side of (26) for 
values of 6, and requiring the coefficient of E to vanish, yield 

= - gl(0) 6 ,  expanding for small 

Note that the determination of the constants A and B is independent of the 
straining function g,. 

The location of the outer edge can be obtained by substituting 

r" = Tg+7j'l(+... (7; = 76) 

into fo + (fl and requiring the result to equal zero. This gives 

Upon substituting the two-term expansion of r" into (15), the true position of 
the outer edge is found up to O(c)  : 

which is again independent of g,, as it should be. It is rather easy to prove that 
the coeficient of 6 is positive for arbitrary values of k. Thus, as anticipated, the 
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true position of the outer edge is farther away from the wall than the zeroth order. 
Therefore, if no straining is applied, i.e. if 7 is identified with 7, the solution will 
not be defined at the outer edge. The straining should be such that is not inside 
the flow field, i.e. ij; should not be positive; otherwise the straining is quite 
arbitrary. It seems convenient to  choose 

From (24) and ( 2 8 )  we then obtain 

(31) 
f ,  = [(k + +) 77; - ( k  + l)fo - (1 - +(&)2)””+a] 7: cot a, 

ij; = - (Ic + +) ($)2 cot a. 

It may be in order to give the results for the important case of uniform 
blowing. For k = 0 the following results may be obtained: 

f(?j,t) = ( 4 1 1 2 -  1) + [{l - (1 - $?j-2)6}42 cot a + ... , 
jj(?j, t )  = 0 + t ( J 2  -7) cot a+ .. ., 

(32 a)  
( 3 2 b )  

Yp= 42+[(&r-l)COta+ ..., (32c) 
7 = 7-t [arcsin (?j/yi2) cot a + .. .. ( 3 2 d )  

3. Almost horizontal wall 
I n  the examples that have been discussed up to now, the pressure equals zero 

in the fundamental term. This is due to  the fact that  the second momentum 
equation only adds effects of higher order. If the plate is almost horizontal, i.e. 
ifa N 0 or cot a 1, this can no longer be true. The pressure effect of the second 
momentum equation is so important, that it has to  be included in the main flow. 
This flow is now described by (1) and ( 2 )  and by 

o = - -  - -gcota. 
aY a r) P 

Upon integration this gives for the pressure 

j i p  
- = -+(?Je-y)gcota. 
P P  

Substitution of (34) into the first inviscid momentum equation leads to 

( Z )  au au 
ax ay u - + v - = g  1--cota . 

( 3 3 )  

(34) 

(35)  

If dyeldx > 0, i.e. if the film becomes thicker downstream, which usually is the 
case, the forcing term on the right-hand side of (35) becomes smaller. We can 
imagine that for values of a that  are sufficiently near zero, the force may vanish 
or even become negative. This will halt or reverse the flow. Within the context of 
this paper it does not seem to be realistic to  consider these reverse flows. An 
example to be given presently will show that a certain value of a exists, below 
which no solution to the problem can be found. This leads us to the conclusion 
that backward flows are not described by the simple equation (35). 
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(a)  A similarity solution 
Equations (1) and (35) admit a simple similarity solution if the injection rate is 
proportional to xt. I n  this case we use the following substitutions: 

y gh 
$ = #Nx%f(q ) ;  q = --, ye = yx (36) xN 

to obtain an ordinary differential equation to describe the flow 

2(f')2 - 6ff" = 9( 1 - y cot a) ,  (37) 

f(0) = - 1, f'(0) = 0, f(yg3/N) = 0. (38) 

(39) 

where f has to  satisfy the following boundary conditions : 

Equation (37) may be integrated once, yielding 

lg( 1-7 cot a) - ( f ' )21 = $11 - y cot a/ I f / $ .  

p(1 -ycota)  2 0. 

which satisfies the boundary conditions a t  y = 0. It now follows that 

If this condition is not fulfilled the function f can never attain the value zero, 
which it must do at y = ye. Since f should not be equal to  zero at a location other 
than the outer edge, we conclude that always ;( 1 - y cot a )  - ( f ' ) 2  2 0. We can 
now integra,te (39) further and obtain 

= ;[in - arctan {( -f)*/[l- ( -f)$]}h + {( -f)# [ 1 - ( -f)$]}&]. (40) 
The unknown parameter y is obtained by application of the third condition 
of (38). With (40) this gives 

(41) y( 1 - y cot a)+ = &rN{2/g}:. 

I n  order to study the dependence of y on a it is necessary to note that g, being 
the longitudinal component of the force of gravity g, also depends on 
a: g = gsina. Rewrite (41) as 

(42) 

which is the standard form for cubic equations. It is known (Upspensky 1948) 
that the solutions to  (42) depend strongly on the value of the discriminant 

cos2a sin3u A = - - -  
4m2 27m3' (43) 

If A > 0 there is only one real solution. One can easily convince oneself that  this 
solution is negative ( $ ( O )  > 0 but $ -+ - 00 as r-+ - 00). The original equation (41) 
does not allow negative values of y, which leads to the conclusion that for those 
values of a for which the discriminant is positive the problem does not have 
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a solution. It is easily seen that this situation is attained for certain values of CL. 

that  are small enough (small slope of the plate) or for large enough va,lues of m 
(large injection rates or low gravity fields). 

If A < 0 there are three real solutions to  (42), one of which is again negative. 
I n  order to point out which of these positive values is the correct one, let us 
return to  (41). One can readily convince oneself, by employing a graphical 
method, that  (41) yields two positive values of y. The smaller of these values 
decreases when the injection rate ( N )  decreases or when the force of gravity 
increases. This is a physically realistic behaviour since one expects thinner films 
under those conditions. The other root displays an opposite behaviour so that 
we have to  choose the smaller of the two roots as our solution. By using classical 
methods, this solution can be obtained : 

3m + 4 sin3 a 

y = ( ,/cosi [ n - arctan ( 
27m cos2 a (44) 

The lower bound on a and the upper bound on m that exist for the validity of (44) 
are given by A = 0. From (43) we find that these limiting conditions should be 

4 I 
s3-s-- = 0,  s = -  

2 7m sin a ' 

obtained from 

The discriminant of this equation 

(45) 

is seen to be positive if m < 24319. I n  that case there is only one real root of (45) 
and this can be found by using Cardan's formula 

243 for m < -. (47) 
9 

If, on the other hand, the discriminant (46) is positive, there will be three real 
roots. It is easily proved that two of these are negative. The only positive root 

From both (47) and (48) we find for the transition case 

sina,,, = 4312 or a, = GO", for m = 24319. (49) 

Thus, the value m = 24319 already represents a case of very strong blowing that 
probably is not realistic. Only the very small values of m seem to be realizable. 
By evaluating (47) for very small values of m, we find an approximate formula 
for the limiting surface inclination : 

a, N :(2m)%. (50)  
Finally, for a given inclination of the porous surface, the maximum value of m 
is given directly by (45). 
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( b )  Arbitrary injection rates 

It is possible to  integrate (35) for arbitrary injection rates. To that end we use 
von Mises's transformation of co-ordinates in which the velocity is taken as a 
function of x and the stream function @. If we apply this technique to (35) we 
can integrate once with respect to  x yielding 

u2(x, @I = 29 {. - i$tu(@) + [Ye{i@1u(@)1 - Y e ( 4 1  cot 4- (51) 

Here i@, is the inverse function of $,, which is the value of the stream function 
at the wall. The solution of (51) satisfies the boundary conditions a t  the wall. 
Equation (51) can be readily put into the form 

By choosing i@,,,(@) for a new variable, this yields 

where we have introduced the injection velocity v,(x) = - @L,(x). 
Equation (52) still cannot be considered to be the solution of the problem, as 

it contains the unknown outer edge y"(x). However, (52) yields a singular non- 
linear integral equation for ye(x), if it is evaluated a t  @ = 0: 

Here we have used i @ J O )  = 0 since $,(O) = 0. If equation (53 )  has been solved, 
the result can be substituted into (52) yielding the solution for arbitrary blowing. 

The validity of (53) can be checked easily for k = 4 by substitution and 
comparing with (41). 

As a further example, let us consider the case of uniform blowing: v,(t) is 
a constant. In  this case we use a device of Cole & Aroesty (1968) which transforms 
(53) into an integral equation of the Abel type. Put  

.-y"(x) cot a = a; t - y"t) cot a = w .  (54) 

From f53) we then obtain 

This is indeed Abel's integral equation. We now proceed by inverting this 
equation using a standard technique (Pogorzelski 1966) which gives 

Using the original variables, but interchanging their roles, we obtain the 

(57) 
(aye/&) at 

0 [z - t +(ye@) - ye@)) cot a]$.  

following: 
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By writing the numerator of the integrand as 

(!EL)++ 1 
at cota cota 

we can split up the integral of (57) into two separate integrals. The first of these 
can be integrated directly, while the second can be expressed in ye by using (53) 
for constant uw. The result is the following non-linear first-order differential 
equation for ye(%) : 

I 776 = (1 - S ' )  {(a/€) - 2 ( x  - qa}, 
E = v,,,,cota/(291)8, B(x) = y"ota/l, x = x$,j (58 )  

where I is an auxiliary reference length. By writing S ( x )  = x - z ( x )  this equation 
may become a linear equation if the roles of z and x are interchanged: 

The general solution is 

x = A ez'nes + z + 2sz4 + me2 - me2 @Inez  erf ( z / m 2 )  1.  (60) 

When choosing the value of the constant of integration, we have to take into 
account that the inviscid film resulting from uniform blowing is not valid a t  the 
leading edge, but its validity starts sufficiently far downstream. Thus, the 
constant A has to be chosen in such a way so as to satisfy certain downstream 
conditions. It is seen that, by choosing A = me2, the behaviour for x - f m  differs 
considerably from that obtained by taking any other value of A .  We will proceed 
by taking A = r e 2  and we will prove this to be the correct choice by comparing 
the result with the findings of 3 2. Equation (60) can now be written 

x = z + 2ezt + 7 x 2  + re2 es'nE* erfc (z/rsz)+, (61) 

where erfc denotes the complementary error function. Evidently for x+co the 
variable x will tend to infinity. By using an asymptotic expansion for the com- 
plementary error function, (61) can be inverted for large values of x ,  which gives 

- - -  - x - 2qX-a + ('7 - 77) c? + O(J!-l) ,  ( 6 2 )  

rp= 2/2+(*77- I)(-cota+0(5").  (63) 

Using again the original variables and (6) this may be transformed into 

which agrees with ( 3 . 2 ~ ) .  

4. Concluding remarks 
In  the present work, several aspects of inviscid film flow with fiuid injection 

have been considered, and a number of analytical solutions have been presented. 
Due to the inviscid nature of the flow, the normal derivative of the tangential 
velocity does not vanish a t  the outer edge of the film. If viscous effects are taken 
into account, this normal derivative should vanish in order to ensure vanishing 
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shear stress at the outer edge. Including this effect requires application of a 
singular perturbation technique of the inner and outer expansion type. Here the 
inviscid layer would be the outer layer, as it comprises the major part of the 
flow field. In the very thin ‘inner ’ layer, which is located at  the outer edge of the 
inviscid layer, the velocity gradient changes rapidly from its non-zero inviscid 
value to zero at  the true outer edge of the film. Work on this phenomenon is 
presently in progress and the results are expected to be published in a subsequent 
paper. 

The author is indebted to the National Research Council of Canada for 
financial support. 
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